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ABSTRACT 

A second order accurate numerical approximation to the advection terms in the 
primitive equations of hydrodynamics is proposed. The scheme is compared with a 
similar second-order scheme and a first-order scheme in view of aliasing effects and of 
amplitude and phase errors. A stability criterion is derived for the one-dimensional case 
and one is suggested for the two-dimensional case. Numerical results from simple test 
calculations are given. 

INTRODUCTION 

This paper describes a second-order numerical approximation to the advective 
terms in the time-dependent nonlinear equations of motion associated with long- 
term atmospheric and oceanic hydrodynamics, the so-called primitive equations. 
The method is applied first to a one-space-dimensional equation, and the amplitude 
damping introduced by the finite-difference approximations is compared with a 
similar second-order scheme and with a first-order scheme. The relative merits 
of the three schemes in view of aliasing and of the phase error introduced by the 
finite-difference approximations are also discussed. 

The method is then applied to advection in two space dimensions, and a con- 
dition necessary for computational stability is suggested. 

Finally, results of simple one-dimensional test calculations involving advection 
of a Gaussian distribution are presented. 

Second-order accuracy in numerical hydrodynamic calculations is achieved quite 
easily by schemes which employ centered time differences. Unfortunately, centered- 
time-difference schemes require complete knowledge of the state vector for times 1 
and t - d t in order to advance the system to t + d t, and thus have computer- 
memory requirements which are approximately double those of two time-step 
schemes. They also have a disadvantage in that they produce two divergent 
solutions at adjacent time steps [l]. 

471 



472 CROWLEY 

It is also possible to attain second-order accuracy with one-sided time differences 
as Lax and Wendroff [2] have indicated, but their method involves quite com- 
plicated spatial derivatives which necessitate a large number of arithmetic 
operations per mesh point. An alternative plan is to use a two-step version of the 
Lax-Wendroff scheme as proposed by Richtmyer [3]. Both of these methods have 
been used with success by Burstein [4] in compressible hydrodynamic calculations. 

The proposed scheme is based on a two-time-step scheme-i.e., the state vector 
is known at time t, and with this information and some intermediate calculated 
information at t + -b(dt), the system is advanced to time t + At. In this way, this 
scheme is similar to the Lax-Wendroff-Ritchmyer two-step scheme, but there 
are two immediate differences. The equations which comprise this scheme are not 
required to be in conservation form as they are in Lax-Wendroff, and since, 
in this scheme every space point is calculated each time cycle, the two out-of-phase 
solutions which appear at adjacent mesh points in Lax-Wendroff [.5] cannot 
appear here. 

ONE-DIMENSIONAL FORMULATION 

Consider 

where IJ = $(x, t) and u = U(X, t). For simplicity U(X, t) is assumed known, but, 
in general, it is one of the elements in the vector #. For example, if # = u and 
s = vu,, ) Eq. (1) becomes Burgers’ equation, a one-dimensional version of the 
Navier-Stokes equation with acceleration due to pressure gradients, Coriolis 
effects, etc., eliminated. 

In the following analysis, 5’ will be taken to be zero, but its inclusion in the 
finite-difference approximations can be accomplished in a straightforward manner. 

Expanding $(x, t) in a Taylor series, and denoting #(x, t) = #@lx, NAt) by J/Q”‘, 
’ 

If the first three terms in the expansion are available, then #I is said to be second- 
order accurate, or the error in amplitude of $J due to truncation is third order. 

Equation (2) may be written as 

(3) 
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Since the bracketed term (evaluated at j and N) is & W” to first order, the expansion 
may also be written 

,y = t&N + g jytl’z At + O(AP), 

Thus it appears that a two-stage process will give the desired results. That is, Z/J is 
first approximated at N + 4 by a first order scheme, and then using these inter- 
mediate and less accurate results, #+’ may be obtained to second order. 

Using (1) to evaluate &&V, 

a+ N a$ N - =--u--- 
at j ax j (6) 

(7) 

The combination of (7) with (5) is first-order accurate, but unconditionally 
unstable. Fortunately this first step in the calculation only has to be first-order 
accurate, so that a higher-order term may be added which will stabilize this step 
and not decrease the accuracy of the final step. 

Let two finite-difference operators A and e be defined by 

where 

G+h = 7 wi+1 - $5~3, 

q = u,At/Ax and A& = (A&j . 

(9) 

Then (5) becomes, when the time derivative is replaced by a space derivative 
plus a higher-order term that introduces stability, 

In (4), the time derivative may be replaced by a space derivative via (1) and (7). 
Thus 

,y = I&+ - c*y. (11) 
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Incorporating (10) into (1 I), finally 

+;+1 = (I - qz - A)) l&-J. w 

Numerical stability requires that the eigenvalues of the operator (I - e + &I) 
be on or inside the unit circle. If & = eikidz, i.e., if an eigenvector is substituted 
for #, it is found that the square of the magnitude of the eigenvalues of the operator 
in (12) are 

j & I2 = 1 - (1 - $)($ sin2 0) (1 - cos Q2 (13) 

where 9 = kdx. 
Thus, conditional stability is attained if 1 u I rlt/dx < 2 and amplitude damping 

goes as a4. 
A scheme proposed by Richtmyer [3] (known as the Two-Step Lax-Wendroff 

Scheme) differs from this proposed scheme in that the first step is 

(14) 

rather than Eq. (10). Stability analysis of Richtmyer’s scheme shows that the 
eigenvalues are 

j tI, I2 = 1 - o12 (1 - $1 sin4 0 (15) 

so that numerical stability requirements are the same, but the damping goes as 
01~ rather than CX~. 

A typical first-order-accurate scheme (first-order in time, second-order in space) 
such as that used by Leith [6] and mentioned by Richtmyer [3] is 

This scheme has eigenvalues 1 fL I2 = 1 - (~~(1 - a2)(1 - cos Q2 so that the 
condition for stability is more stringent, namely j cy / < 1, and the amplitude 
damping goes as 01~. 

ALIASING 

Calculations by finite difference methods have a limitation in the range of wave 
numbers that can be represented. For a mesh of M points, the maximum represent- 
able wave number is BM. 

If the & are expanded in terms of the eigenfunctions &‘jAx and if an analysis 
similar to that used by Phillips [7] is applied to these difference equations, it can 
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be shown that the advection terms cause modes p and q to interact to change the 
energy in modes p + q and p - q. Since both p and q can be any integer between 
- *M and &M, the interactionp + q can produce a mode which is outside the range 
of representable wave numbers. The energy, rather than disappearing, is falsified, or 
aliased into modes (p + q) mod(M). Thus energy which should leave through 
the top end of the spectrum and be lost, shows up in the lower wave numbers, 
disturbing the accuracy of the calculation in the most important region. 

From this point of view, the eigenvalues of the amplification matrix should then, 
ideally, be unity for low to intermediate wave numbers and drop off rather rapidly 
in the intermediate- to high-wave-number range. 

Figure 1 presents the eigenvalues (squared) of the amplification matrix for four 
different one-dimensional schemes. For values of 01 near the stability limit, the 
proposed method (curves a and a’) has less damping for low wave numbers than 
does either the Lax-Wendroff Two Step method (curves c and c’) or Leith’s 
scheme (d). It also has less damping as a pure one-dimensional scheme than its 
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two-dimensional analog (b) with one velocity component set zero. It should be 
noted, however, that curve (d) is more desirable from the point of view of aliasing 
and is almost as good as curve (a) in the low-wave-number range. As a tends 
toward the stability limit, curve (a’) gains some low-wave-number damping, but is 
much improved over (a) in the sense of aliasing. 

If Burgers’ equation is transformed to wave-number space as above, the diffusion 
term VU,, , gains a coefficient which includes the square of the wave number. Thus the 
amplitude damping introduced by it increases as the square of the wave number. 
It is anticipated then that the inclusion of the diffusion term (as, for example, an 
eddy viscosity) will help to inhibit aliasing. 

PHASE ERROR 

In addition to amplitude errors, the finite-difference approximations to Eq. (1) 
also introduce errors in phase. A solution of (I), with S = 0, is &k(z-ut), so that 
after a time interval dt, the correct phase angle is 6 = --ku dt = -001. Sub- 
stituting z,$ = GkjAx into (12), the phase angle after a time interval dt is found to be 

sin 6, = --01 sin 13 11 - g (1 - cos B,/ 11 - (1 - q)i% sin2 0) (1 - ~osB)zJ-~‘~ 

The same analysis applied to the Lax-Wendroff Two-Step Scheme and to the 
Quadratic Advection Scheme [Eq. (16)] give, for the phase angle, respectively, 

sina,= -f3sinBcosO 1 -Gsin4B 1-X 
1 ! 4 ir 

and 

sin 8, = --01 sin O{ 1 - &(I - c?)(l - cos O)2}-112. 

The quantities 6,/6, 8,/S, and SJS for selected values of 0 and for 01 = 0.1 are 
presented in Table I. They show that the proposed scheme and the Quadratic 
Advection Scheme (both second order in space) have approximately the same 
phase error which is not too large for low wave numbers (small 8) but is quite bad 
for large wave numbers. The Two-Step Lax-Wendroff Scheme suffers quite a 
large phase error even at relatively low wave numbers. 

Roberts and Weiss [S] have proposed a finite-difference scheme which is second 
order in time and fourth order in space. In comparing their second-order scheme 
(second order in time and space) with their “fourth” order scheme, they find the 
phase error to be substantially reduced by the use of the higher order scheme. 

Comparison of the phase error in their second-order scheme with columns one 
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TABLE I 

20” 0.9799 0.9209 0.9800 
30” .9550 .8275 .9554 
45” .9004 .6377 .9015 
60” .8270 .4148 .8291 
90” .6361 0. 5409 

120 .4125 -0.2074 .4187 
150” .1902 -0.1655 .1944 
180" 0. 0. 0. 

and three in Table I shows the results to be approximately the same. This indicates 
then that the phase error in the present scheme can perhaps be decreased by using 
a higher-order approximation to the spatial derivatives. 

TWO-DIMENSIONAL ADVECTION 

In two-dimensional Cartesian coordinates, the advection equation becomes 

z,ij is now a function of three independent variables and #(x, y, t) = I&&IX, My, Ndt) 
is denoted by $2, . 

Let the finite difference operators A, B, C, D be defined as follows. 

4k.Z = ~(~ic+1.z - $,-I,,) - (y2 ($k+l,l - 2&J + #k4,z), (17) 

B$k,z = ‘7 G,h,z+l - hz-1) - (y)” C,h.z+l - %c,t + h,z-A (18) 

where ak,z = &J At/Ax and yk,l = +J AtlAy. 
The first step in the cycle is 

#;,;“’ = (I - A)(1 - B) #z,, 
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which may be thought of as two steps #* = (I- B) 4” followed by GN+lj2 = 
(Z - A) $b*. 

This procedure (known as cascading, or time splitting) is computationally stable 
so long as the individual steps are stable, but terms are introduced so that the 
errors are second order rather than third. As in the one-dimensional case, this is 
acceptible as long as the final step produces errors of third order. 

It might be thought that the first step should be #$” = (I- A - B) $&, 
but as indicated by Leith [6], this has modes which are unstable, and is therefore 
unsuitable for stable calculations. It should also be noted that the operator A 
differs from the one-dimensional operator A in that a factor of & is missing from 
the second term. This missing factor is necessary to stabilize the two-dimensional 
case, and leads to the interesting situation that if u = 0 (y = 0) the calculation 
has a condition for stability of 01~ -=c 2 rather than 01~ < 4 as occurs in the strictly 
one-dimensional case. 

The final step is 

and the complete step from t to t + At is thus 

#Et’ = (I- (C + D)(Z - A)V - B> #;I . (21) 

As in the one-dimensional case, numerical stability dictates that the eigenvalues 
of the amplification matrix be on or inside the unit circle. A complete examination 
of the eigenvalues for all wave numbers and all values of 01 and y would be quite 
complicated and is not done here. The approach taken is to consider the case of 
equal wave numbers in both x and y directions and to look at some limiting 
cases. From these, a necessary condition for stability may be derived. It should 
be borne in mind that the standard stability analysis requires a iinearization of 
the equation, and the final answer as to whether the method is stable or not can 
with present techniques only be obtained by numerical experimentation. 

The eigenvalue of the operator in (21) corresponding to an eigenvector 
EiP(lcdZ+ZdY) is 

& = 1 - (a +y3zsinze p - Fy(l - cos@! 

- i(a + 7) sin 0 11 - (1 - cos 0) [ o12 2 y2 + 7 (1 + cos 0) 

- ?(I - cose,lt, (22) 

where 8 = PAX = pdy. 
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For small wave numbers, 

sin 0 = tY(l - +02) and cos e = (1 - y?) 

Then 

I 5, I2 = 1 - $(a + .yy [(a - ,yy + ct2 + y2] e4 

which is stable for all CY and y. 

(23) 

It should be noted, that if the one-dimensional operators are used in the first 
step of the two-dimensional case; i.e., if A = A and B is a similar operator in the 
u direction, then for the case of 0 small, 01 = y, the eigenvalues of the amplification 
matrix are 

I 5 I2 = 1 + t(m4e4) 

which leads to growth and is thus an unusable scheme. 

FIG. 2 
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For large wave numbers l3 = T - E where 0 < E < 1, 

sin 0 = sin E z E, 

Then 

cos 8 = -cos E gg -(l - &“). 

) [,I2 = 1 - (a + y)” E2[1 - q - (1 - c2)2(1 - y2)2]. 

For 01, y small, (21) becomes 

I 4 12 6% 1 - (a + ry e2@?(a - 7)” + $(a” + r2>>, 

which is obviously stable. 
For y = 0, (21) becomes 

j 5 12 = 1 - &2(1 - (1 - 012)2}, 

which requires 01~ < 2. 

(24) 

(25) 

(26) 
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For (y. = y, (21) becomes 

1 4 12 = 1 - 4orV[l - a”][1 - (1 - (Y2)3], (27) 

which requires a2 < 1 hence ala < 1 and y2 < 1. 
For y = $01, 

j 6 12 = 1 - $&2[1 - $3” - (1 - “2)2(1 - &?)2], (28) 

which requires at least a2 < Q. 
Figures 2, 3, and 4 present unretouched contour plots of Eq. (22) which were 

computed by a digital computer and automatically plotted using CRT facilities 
and available plotting programs. The unnormalized abscissa (&) and ordinate ($ 
are related to 01 and y by 01 = .05(01 - 1) and y = .05 (7 - 1) so that 01 and y 
run from 0 to 2. Broken lines indicate level lines of ] [ I2 < 1 and solid lines indicate 
level lines of ( [ I2 > 1. The contour interval is 0.1. 
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Figure 2 is for 0 = .37r; Fig. 3 is for B = .97~ and shows that the stable region 
decreases as 9 increases which is a common experience. 

Figure 4 is for 0 = 0.9997r, the lower left-hand corner still containing the stable 
region, while the upper right band region contains the (very mildly at this wave 
number) unstable region. From this figure, it would appear that a2 + y2 < 1.8 
will ensure computational stability. This is less than that implied by (28) since the 
minimum stability apparently is for 0 < y < .401. 

NUMERICAL RESULTS 

Figure 5 shows the results of three numerical experiments performed using 
Eqs. (10) and (11). For all problems, initial conditions consisted of a Gaussian 
distribution (curve “a”) spread over 36 zones. Periodic spatial boundary conditions 
were applied so that Il/(O, t) = I&L, t), for all time, and in each case u was a constant. 
The analytic solution then involves only a translation of the initial configuration 
through a distance ut = aNAx. 

Results, #(x, t), are plotted versus x - ut and in all cases the profile has moved 
a total distance of 360 zones. Curve “c” is for a: = 0.1 so that the curve is the 

X-ut 
FIG. 5 
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result of 3600 integration steps. Curve “b” is for 01 = 1.8 and is the result of 200 
steps. This shows quite clearly that problems, which are run with dt near the 
maximum permissible time increment, profit from increased accuracy as well as 
from efficient machine-time usage. Unfortunately in most real problems, other 
phenomena such as the propagation of gravity or sound waves enter into the 
stability requirements, and inhibit the time step even more than advection. 

Fourth-order accuracy in space is obtained by including #j+z and $+2 in the 
estimates of the spatial derivatives 

A two-step scheme which is second-order accurate in time and fourth order 
accurate in space is produced by replacing operators (8) and (9) by (29) and (30) 
and substituting these into (10) and (11). A test problem was run using this scheme, 
with cx = 0.1 and 3600 time steps, so that the profile moved 360 zones as in the 
previous two cases. Results were remarkably improved to the extent that, if plotted 
on Fig. 5 they would be indistinguishable from curve “a”. The ratio of these 
results to the analytic results is given as curve “d”. 

It is clear from these test calculations that the fourth-order scheme not only 
improves the phase error, but it also decreases the amplitude damping sub- 
stantially. 

CONCLUSIONS 

A finite-difference method has been proposed which is second order in both 
time and space. The scheme advances the state vector from t to t + dt by a two- 
stage process which involves less calculations than a similar first-order scheme 
would involve in covering the same time interval (the first-order scheme being 
restricted to half the time interval of the proposed scheme). Thus, both increased 
accuracy and computational speed are achieved at the cost of a slight increase in 
the complexity of programming. 

Comparison of the proposed scheme with centered-time-difference schemes, 
which compute the same number of mesh points each cycle, indicates that the 
computer memory requirements for the centered scheme are approximately double 
those of the proposed scheme. The proposed scheme is also not burdened with the 
problem of two solutions appearing at adjacent times, which is associated with 
centered-time-difference schemes. 
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Every space point is calculated every time cycle so that the problem of two 
out-of-phase solutions which appear in the Lax-Wendroff scheme can not appear 
here. 

For values of 01 near the stability limit, the one-dimensional scheme exhibits 
minimal amplitude damping at low wave numbers which increases to a maximum 
at about k = 27~/3Ax and then approaches zero again as k tends to T/AX. This 
latter feature of decreasing damping at higher wave numbers is not desirable 
from the point of view of aliasing, and should be partially eliminated by the 
inclusion of a diffusive term. The minimal damping at low wave numbers is quite 
desirable. 

Comparison of the phase errors inherent in this scheme with those in a scheme 
proposed by Roberts and Weiss, which is second order in time and fourth order in 
space, shows the higher-order scheme in this respect to be more desirable. It is 
thought then that the proposed scheme can be improved by increasing the order 
of the spatial truncation error while not changing the order of the time truncation 
error. Test calculation in one space dimension show this to be true. They also 
indicate that the higher-order scheme has less amplitude damping associated with it. 

Contour plots of the eigenvalues of the amplification matrix are presented for the 
two-dimensional formulation. These suggest that the inequality a2 + y2 < 1.8 is 
necessary for computational stability. 
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